Galois type correspondence for non-separable normal extensions of fields
نویسندگان
چکیده
منابع مشابه
On the Galois Correspondence Theorem in Separable Hopf Galois Theory
In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...
متن کاملGalois Extensions of Hilbertian Fields
We prove the following result: Theorem. Let K be a countable Hilbertian field, S a finite set of local primes of K, and e ≥ 0 an integer. Then, for almost all ∈ G(K)e, the field Ks[ ] ∩Ktot,S is PSC. Here a local prime is an equivalent class p of absolute values of K whose completion is a local field, K̂p. Then Kp = Ks ∩ K̂p and Ktot,S = T p∈S T σ∈G(K) K σ p . G(K) stands for the absolute Galois ...
متن کاملProcyclic Galois Extensions of Algebraic Number Fields
6 1 Iwasawa’s theory of Zp-extensions 9 1.
متن کاملThe Stable Galois Correspondence for Real Closed Fields
In previous work [7], the authors constructed and studied a lift of the Galois correspondence to stable homotopy categories. In particular, if L/k is a nite Galois extension of elds with Galois group G, there is a functor c∗ L/k : SHG → SHk from the G-equivariant stable homotopy category to the stable motivic homotopy category over k such that c∗ L/k (G/H+) = Spec(L)+. The main theorem of [7] s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1986
ISSN: 0386-2194
DOI: 10.3792/pjaa.62.213